关于MongoDB谨防索引seek的效率问题详析

    背景

    最近线上的一个工单分析服务一直不大稳定,监控平台时不时发出数据库操作超时的告警。

    运维兄弟沟通后,发现在每天凌晨1点都会出现若干次的业务操作失败,而数据库监控上并没有发现明显的异常。

    在该分析服务的日志中发现了某个数据库操作产生了 SocketTimeoutException。

    开发同学一开始希望通过调整 MongoDB Java Driver 的超时参数来规避这个问题。
    但经过详细分析之后,这样是无法根治问题的,而且超时配置应该如何调整也难以评估。

    下面是关于对这个问题的分析、调优的过程。

    初步分析

    从出错的信息上看,是数据库的操作响应超时了,此时客户端配置的 SocketReadTimeout 为 60s。
    那么,是什么操作会导致数据库 60s 还没能返回呢?

    业务操作

    左边的数据库是一个工单数据表(t_work_order),其中记录了每张工单的信息,包括工单编号(oid)、最后修改时间(lastModifiedTime)

    分析服务是Java实现的一个应用程序,在每天凌晨1:00 会拉取出前一天修改的工单信息(要求按工单号排序)进行处理。

    由于工单表非常大(千万级),所以在处理时会采用分页的做法(每次取1000条),使用按工单号翻页的方式:

    第一次拉取

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}, 
      "oid": {$exists: true}})
      .sort({"oid":1}).limit(1000)

    第二次拉取,以第一次拉取的最后一条记录的工单号作为起点

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}, 
      "oid": {$exists: true, $gt: "VXZ190"}})
      .sort({"oid":1}).limit(1000)
    ..

    根据这样的查询,开发人员给数据表使用的索引如下:

    
    db.t_work_order.ensureIndexes({
      "oid" : 1,
      "lastModifiedTime" : -1
    })

    尽管该索引与查询字段基本是匹配的,但在实际执行时却表现出很低的效率:
    第一次拉取时间非常的长,经常超过60s导致报错,而后面的拉取时间则会快一些

    为了精确的模拟该场景,我们在测试环境中预置了小部分数据,对拉取记录的SQL执行Explain:

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}
      "oid": {$exists: true}})
      .sort({"oid":1}).limit(1000)
      .explain("executionStats")

    输出结果如下

    “nReturned” : 1000,
    “executionTimeMillis” : 589,
    “totalKeysExamined” : 136661,
    “totalDocsExamined” : 1000,

    “indexBounds” : {
        “oid” : [
            “[MinKey, MaxKey]”
        ],
        “lastModifiedTime” : [
            “(new Date(1554806697106), new Date(1554803097106))”
        ]
    },
    “keysExamined” : 136661,
    “seeks” : 135662,

    在执行过程中发现,检索1000条记录,居然需要扫描 13.6 W条索引项!

    其中,几乎所有的开销都花费在了 一个seeks操作上了。

    索引seeks的原因

    官方文档对于 seeks 的解释如下:

    The number of times that we had to seek the index cursor to a new position in order to complete the index scan.

    翻译过来就是:

    seeks 是指为了完成索引扫描(stage),执行器必须将游标定位到新位置的次数。

    我们都知道 MongoDB 的索引是B+树的实现(3.x以上),对于连续的叶子节点扫描来说是非常快的(只需要一次寻址),那么seeks操作太多则表示整个扫描过程中出现了大量的寻址(跳过非目标节点)。
    而且,这个seeks指标是在3.4版本支持的,因此可以推测该操作对性能是存在影响的。

    为了探究 seeks 是怎么产生的,我们对查询语句尝试做了一些变更:

    去掉 exists 条件

    exists 条件的存在是因为历史问题(一些旧记录并不包含工单号的字段),为了检查exists查询是否为关键问题,修改如下:

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}
      })
      .sort({"oid":1}).limit(1000)
      .explain("executionStats")

    执行后的结果为:

    “nReturned” : 1000,
    “executionTimeMillis” : 1533,
    “totalKeysExamined” : 272322,
    “totalDocsExamined” : 272322,
     

    “inputStage” : {
      “stage” : “FETCH”,
      “filter” : {
          “$and” : [
              {
                  “lastModifiedTime” : {
                      “$lt” : ISODate(“2019-04-09T10:44:57.106Z”)
                  }
              },
              {
                  “lastModifiedTime” : {
                      “$gt” : ISODate(“2019-04-09T09:44:57.106Z”)
                  }
              }
          ]
    },

    “indexBounds” : {
        “oid” : [
            “[MinKey, MaxKey]”
        ],
        “lastModifiedTime” : [
            “[MaxKey, MinKey]”
        ]
    },
    “keysExamined” : 272322,
    “seeks” : 1,

    这里发现,去掉 exists 之后,seeks 变成了1次,但整个查询扫描了 27.2W 条索引项! 刚好是去掉之前的2倍。

    seeks 变为1次说明已经使用了叶节点顺序扫描的方式,然而由于扫描范围非常大,为了找到目标记录,会执行顺序扫描并过滤大量不符合条件的记录。

    在 FETCH 阶段出现了 filter可说明这一点。与此同时,我们检查了数据表的特征:同一个工单号是存在两条记录的!于是可以说明:

    在存在exists查询条件时,执行器会选择按工单号进行seeks跳跃式检索,如下图:

    在不存在exists条件的情况下,执行器选择了叶节点顺序扫描的方式,如下图:

    gt 条件和反序

    除了第一次查询之外,我们对后续的分页查询也进行了分析,如下:

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}, 
      "oid": {$exists: true, $gt: "VXZ190"}})
      .sort({"oid":1}).limit(1000)
      .explain("executionStats")

    上面的语句中,主要是增加了$gt: “VXZ190″这一个条件,执行过程如下:

    
    "nReturned" : 1000,
    "executionTimeMillis" : 6,
    "totalKeysExamined" : 1004,
    "totalDocsExamined" : 1000,
    
    ...
    
    "indexBounds" : {
      "oid" : [ 
        "(\"VXZ190\", {})"
      ],
      "lastModifiedTime" : [ 
        "(new Date(1554806697106), new Date(1554803097106))"
      ]
    },
    "keysExamined" : 1004,
    "seeks" : 5,

    可以发现,seeks的数量非常少,而且检索过程只扫描了1004条记录,效率是很高的。

    那么,是不是意味着在后面的数据中,满足查询的条件的记录非常密集呢?

    为了验证这一点,我们将一开始第一次分页的查询做一下调整,改为按工单号降序的方式(从后往前扫描):

    
    db.t_work_order.find({
      "lastModifiedTime":{
       $gt: new Date("2019-04-09T09:44:57.106Z"),
       $lt: new Date("2019-04-09T10:44:57.106Z")}, 
      "oid": {$exists: true}})
      .sort({"oid":-1}).limit(1000)
      .explain("executionStats")

    新的”反序查询语句”的执行过程如下:

    
    "nReturned" : 1000,
    "executionTimeMillis" : 6,
    "totalKeysExamined" : 1001,
    "totalDocsExamined" : 1000,
    
    ...
    
    "direction" : "backward",
    "indexBounds" : {
      "oid" : [ 
        "[MaxKey, MinKey]"
      ],
      "lastModifiedTime" : [ 
        "(new Date(1554803097106), new Date(1554806697106))"
      ]
    },
    "keysExamined" : 1001,
    "seeks" : 2,

    可以看到,执行的效率更高了,几乎不需要什么 seeks 操作!

    经过一番确认后,我们获知了在所有数据的分布中,工单号越大的记录其更新时间值也越大,基本上我们想查询的目标数据都集中在尾端。

    于是就会出现一开始提到的,第一次查询非常慢甚至超时,而后面的查询就快了。

    上面提到的两个查询执行路线如图所示:

    加入$gt 条件,从中间开始检索

    反序,从后面开始检索

    优化思路

    通过分析,我们知道了问题的症结在于索引的扫描范围过大,那么如何优化,以避免扫描大量记录呢?

    从现有的索引及条件来看,由于同时存在gt、exists以及叶子节点的时间范围限定,不可避免的会产生seeks操作,
    而且查询的性能是不稳定的,跟数据分布、具体查询条件都有很大的关系。

    于是一开始所提到的仅仅是增加 socketTimeout 的阈值可能只是治标不治本,一旦数据的索引值分布变化或者数据量持续增大,可能会发生更严重的事情。

    回到一开始的需求场景,定时器要求读取每天更新的工单(按工单号排序),再进行分批处理。

    那么,按照化零为整的思路,新增一个lastModifiedDay字段,这个存储的就是lastModifiedTime对应的日期值(低位取整),这样在同一天内更新的工单记录都有同样的值。

    建立组合索引 {lastModifiedDay:1, oid:1},相应的查询条件改为:

    
    {
     "lastModifiedDay": new Date("2019-04-09 00:00:00.000"),
     "oid": {$gt: "VXZ190"}
    } 
    -- limit 1000

    执行结果如下:

    “nReturned” : 1000,
    “executionTimeMillis” : 6,
    “totalKeysExamined” : 1000,
    “totalDocsExamined” : 1000,

    “indexBounds” : {
        “lastModifiedDay” : [
            “(new Date(1554803000000), new Date(1554803000000))”
        ],
        “oid” : [
            “(\”VXZ190\”, {})”
        ]
    },
    “keysExamined” : 1000,
    “seeks” : 1,

    这样优化之后,每次查询最多只扫描1000条记录,查询速度是非常快的!

    小结

    本质上,这就是一种空间换时间的方法,即通过存储一个额外的索引字段来加速查询,通过增加少量的存储开销提升了整体的效能。

    在对于许多问题进行优化时,经常是需要从应用场景触发,适当的转换思路。

    比如在本文的问题中,是不是一定要增加字段呢?如果业务上可以接受不按工单号排序进行读取,那么仅使用更新时间字段进行分页拉取也是可以达到效果的,具体还是要由业务场景来定。

    总结

    以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对lingkb的支持。